Parallelization Strategies for Hybrid Metaheuristics Using a Single GPU and Multi-core Resources

نویسندگان

  • Thé Van Luong
  • Éric D. Taillard
  • Nouredine Melab
  • El-Ghazali Talbi
چکیده

Hybrid metaheuristics are powerful methods for solving complex problems in science and industry. Nevertheless, the resolution time remains prohibitive when dealing with large problem instances. As a result, the use of GPU computing has been recognized as a major way to speed up the search process. However, most GPU-accelerated algorithms of the literature do not take benefits of all the available CPU cores. In this paper, we introduce a new guideline for the design and implementation of effective hybrid metaheuristics using heterogeneous resources.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems

Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...

متن کامل

Parallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach

There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...

متن کامل

Research Report: GPU-based Approaches for Hybrid Metaheuristics

In combinatorial optimization, near-optimal algorithms such as metaheuristics allow to iteratively solve in a reasonable time NP-hard complex problems. Two main categories of metaheuristics are distinguished: population-based metaheuristics (P-metaheuristics) and solution-based metaheuristics (S-metaheuristics). P-metaheuristics are population-oriented as they manage a whole population of solut...

متن کامل

Simplex Parallelization in a Fully Hybrid Hardware Platform

The simplex method has been successfully used in solving linear programming (LP) problems for many years. Parallel approaches have also extensively been studied due to the intensive computations required, especially for the solution of large LP problems. Furthermore, the rapid proliferation of multicore CPU architectures as well as the computational power provided by the massive parallelism of ...

متن کامل

An approach to Improve Particle Swarm Optimization Algorithm Using CUDA

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012